Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(19): 523-528, 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2319324

ABSTRACT

On January 31, 2020, the U.S. Department of Health and Human Services (HHS) declared, under Section 319 of the Public Health Service Act, a U.S. public health emergency because of the emergence of a novel virus, SARS-CoV-2.* After 13 renewals, the public health emergency will expire on May 11, 2023. Authorizations to collect certain public health data will expire on that date as well. Monitoring the impact of COVID-19 and the effectiveness of prevention and control strategies remains a public health priority, and a number of surveillance indicators have been identified to facilitate ongoing monitoring. After expiration of the public health emergency, COVID-19-associated hospital admission levels will be the primary indicator of COVID-19 trends to help guide community and personal decisions related to risk and prevention behaviors; the percentage of COVID-19-associated deaths among all reported deaths, based on provisional death certificate data, will be the primary indicator used to monitor COVID-19 mortality. Emergency department (ED) visits with a COVID-19 diagnosis and the percentage of positive SARS-CoV-2 test results, derived from an established sentinel network, will help detect early changes in trends. National genomic surveillance will continue to be used to estimate SARS-CoV-2 variant proportions; wastewater surveillance and traveler-based genomic surveillance will also continue to be used to monitor SARS-CoV-2 variants. Disease severity and hospitalization-related outcomes are monitored via sentinel surveillance and large health care databases. Monitoring of COVID-19 vaccination coverage, vaccine effectiveness (VE), and vaccine safety will also continue. Integrated strategies for surveillance of COVID-19 and other respiratory viruses can further guide prevention efforts. COVID-19-associated hospitalizations and deaths are largely preventable through receipt of updated vaccines and timely administration of therapeutics (1-4).


Subject(s)
COVID-19 , Sentinel Surveillance , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Public Health , SARS-CoV-2 , United States/epidemiology , Wastewater-Based Epidemiological Monitoring
2.
Am J Hypertens ; 36(8): 439-445, 2023 Jul 14.
Article in English | MEDLINE | ID: covidwho-2306051

ABSTRACT

BACKGROUND: The COVID-19 pandemic disrupted healthcare in the United States and raised concerns about certain antihypertensives, and may have impacted both prescribing practices and access to blood pressure (BP) medications. METHODS: We assessed trends in BP prescription fills before and during the first year of the COVID-19 pandemic, using cross-sectional data for BP fills and tablets in the IQVIA (IMS Health) National Prescription Audit® database. Drugs filled via retail (92% coverage), mail-order (78% coverage), and long-term care (72% coverage) channels from January 2018 through December 2020 were included. Data were projected nationally and by state. RESULTS: Between 2.9 and 3.4 billion BP tablets were dispensed monthly until February 2020, increasing sharply to 3.8 billion in March 2020 and declining to 3.5 billion in April, then increasing at 3-month intervals until December 2020. The number of tablets per fill increased slightly over time, with the largest increase (from 66.7 to 68.6) during February-March, 2020. Tablets were dispensed through retail channels (99.7 billion), mail-order (14.7 billion), and long-term care (5.3 billion). Rates of patients initiating new medications decreased during 2020 compared to prior years. Fills did not vary significantly by drug class. CONCLUSIONS: A sharp increase in BP fills occurred with COVID-19 emergence, suggesting patients may have secured medications in preparation for potential access limitations. A decrease in new fills, indicating decreased initiation and/or modification of treatment regimens, suggests need for efforts to re-engage patients in the healthcare system and provide alternative ways to obtain medication refills and adjustments.


Subject(s)
COVID-19 , Pandemics , Humans , United States/epidemiology , Blood Pressure , Cross-Sectional Studies , COVID-19/epidemiology , Prescriptions
3.
Public Health Rep ; 138(3): 428-437, 2023.
Article in English | MEDLINE | ID: covidwho-2266117

ABSTRACT

Early during the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) leveraged an existing surveillance system infrastructure to monitor COVID-19 cases and deaths in the United States. Given the time needed to report individual-level (also called line-level) COVID-19 case and death data containing detailed information from individual case reports, CDC designed and implemented a new aggregate case surveillance system to inform emergency response decisions more efficiently, with timelier indicators of emerging areas of concern. We describe the processes implemented by CDC to operationalize this novel, multifaceted aggregate surveillance system for collecting COVID-19 case and death data to track the spread and impact of the SARS-CoV-2 virus at national, state, and county levels. We also review the processes established to acquire, process, and validate the aggregate number of cases and deaths due to COVID-19 in the United States at the county and jurisdiction levels during the pandemic. These processes include time-saving tools and strategies implemented to collect and validate authoritative COVID-19 case and death data from jurisdictions, such as web scraping to automate data collection and algorithms to identify and correct data anomalies. This topical review highlights the need to prepare for future emergencies, such as novel disease outbreaks, by having an event-agnostic aggregate surveillance system infrastructure in place to supplement line-level case reporting for near-real-time situational awareness and timely data.


Subject(s)
COVID-19 , Humans , United States/epidemiology , COVID-19/epidemiology , SARS-CoV-2 , Pandemics/prevention & control , Disease Outbreaks , Centers for Disease Control and Prevention, U.S.
4.
MMWR Morb Mortal Wkly Rep ; 71(33): 1057-1064, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1994637

ABSTRACT

As SARS-CoV-2, the virus that causes COVID-19, continues to circulate globally, high levels of vaccine- and infection-induced immunity and the availability of effective treatments and prevention tools have substantially reduced the risk for medically significant COVID-19 illness (severe acute illness and post-COVID-19 conditions) and associated hospitalization and death (1). These circumstances now allow public health efforts to minimize the individual and societal health impacts of COVID-19 by focusing on sustainable measures to further reduce medically significant illness as well as to minimize strain on the health care system, while reducing barriers to social, educational, and economic activity (2). Individual risk for medically significant COVID-19 depends on a person's risk for exposure to SARS-CoV-2 and their risk for developing severe illness if infected (3). Exposure risk can be mitigated through nonpharmaceutical interventions, including improving ventilation, use of masks or respirators indoors, and testing (4). The risk for medically significant illness increases with age, disability status, and underlying medical conditions but is considerably reduced by immunity derived from vaccination, previous infection, or both, as well as timely access to effective biomedical prevention measures and treatments (3,5). CDC's public health recommendations change in response to evolving science, the availability of biomedical and public health tools, and changes in context, such as levels of immunity in the population and currently circulating variants. CDC recommends a strategic approach to minimizing the impact of COVID-19 on health and society that relies on vaccination and therapeutics to prevent severe illness; use of multicomponent prevention measures where feasible; and particular emphasis on protecting persons at high risk for severe illness. Efforts to expand access to vaccination and therapeutics, including the use of preexposure prophylaxis for persons who are immunocompromised, antiviral agents, and therapeutic monoclonal antibodies, should be intensified to reduce the risk for medically significant illness and death. Efforts to protect persons at high risk for severe illness must ensure that all persons have access to information to understand their individual risk, as well as efficient and equitable access to vaccination, therapeutics, testing, and other prevention measures. Current priorities for preventing medically significant illness should focus on ensuring that persons 1) understand their risk, 2) take steps to protect themselves and others through vaccines, therapeutics, and nonpharmaceutical interventions when needed, 3) receive testing and wear masks if they have been exposed, and 4) receive testing if they are symptomatic, and isolate for ≥5 days if they are infected.


Subject(s)
COVID-19 , Antiviral Agents , COVID-19/epidemiology , COVID-19/prevention & control , Delivery of Health Care , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination
5.
MMWR Morb Mortal Wkly Rep ; 71(32): 1005-1010, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1994633

ABSTRACT

Self-tests* to detect current infection with SARS-CoV-2, the virus that causes COVID-19, are valuable tools that guide individual decision-making and risk reduction† (1-3). Increased self-test use (4) has likely contributed to underascertainment of COVID-19 cases (5-7), because unlike the requirements to report results of laboratory-based and health care provider-administered point-of-care COVID-19 tests,§ public health authorities do not require reporting of self-test results. However, self-test instructions include a recommendation that users report results to their health care provider so that they can receive additional testing and treatment if clinically indicated.¶ In addition, multiple manufacturers of COVID-19 self-tests have developed websites or companion mobile applications for users to voluntarily report self-test result data. Federal agencies use the data reported to manufacturers, in combination with manufacturing supply chain information, to better understand self-test availability and use. This report summarizes data voluntarily reported by users of 10.7 million self-tests from four manufacturers during October 31, 2021-June 11, 2022, and compares these self-test data with data received by CDC for 361.9 million laboratory-based and point-of-care tests performed during the same period. Overall trends in reporting volume and percentage of positive results, as well as completeness of reporting demographic variables, were similar across test types. However, the limited amount and quality of data reported from self-tests currently reduces their capacity to augment existing surveillance. Self-tests provide important risk-reduction information to users, and continued development of infrastructure and methods to collect and analyze data from self-tests could improve their use for surveillance during public health emergencies.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , SARS-CoV-2 , Self-Testing , United States/epidemiology
6.
MMWR Morb Mortal Wkly Rep ; 71(14): 517-523, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1780340

ABSTRACT

Cardiac complications, particularly myocarditis and pericarditis, have been associated with SARS-CoV-2 (the virus that causes COVID-19) infection (1-3) and mRNA COVID-19 vaccination (2-5). Multisystem inflammatory syndrome (MIS) is a rare but serious complication of SARS-CoV-2 infection with frequent cardiac involvement (6). Using electronic health record (EHR) data from 40 U.S. health care systems during January 1, 2021-January 31, 2022, investigators calculated incidences of cardiac outcomes (myocarditis; myocarditis or pericarditis; and myocarditis, pericarditis, or MIS) among persons aged ≥5 years who had SARS-CoV-2 infection, stratified by sex (male or female) and age group (5-11, 12-17, 18-29, and ≥30 years). Incidences of myocarditis and myocarditis or pericarditis were calculated after first, second, unspecified, or any (first, second, or unspecified) dose of mRNA COVID-19 (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) vaccines, stratified by sex and age group. Risk ratios (RR) were calculated to compare risk for cardiac outcomes after SARS-CoV-2 infection to that after mRNA COVID-19 vaccination. The incidence of cardiac outcomes after mRNA COVID-19 vaccination was highest for males aged 12-17 years after the second vaccine dose; however, within this demographic group, the risk for cardiac outcomes was 1.8-5.6 times as high after SARS-CoV-2 infection than after the second vaccine dose. The risk for cardiac outcomes was likewise significantly higher after SARS-CoV-2 infection than after first, second, or unspecified dose of mRNA COVID-19 vaccination for all other groups by sex and age (RR 2.2-115.2). These findings support continued use of mRNA COVID-19 vaccines among all eligible persons aged ≥5 years.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , Myocarditis/epidemiology , Pericarditis/epidemiology , Pericarditis/etiology , RNA, Messenger , SARS-CoV-2 , United States/epidemiology , Vaccination/adverse effects
7.
MMWR Morb Mortal Wkly Rep ; 70(1): 14-19, 2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1395388

ABSTRACT

During early August 2020, county-level incidence of coronavirus disease 2019 (COVID-19) generally decreased across the United States, compared with incidence earlier in the summer (1); however, among young adults aged 18-22 years, incidence increased (2). Increases in incidence among adults aged ≥60 years, who might be more susceptible to severe COVID-19-related illness, have followed increases in younger adults (aged 20-39 years) by an average of 8.7 days (3). Institutions of higher education (colleges and universities) have been identified as settings where incidence among young adults increased during August (4,5). Understanding the extent to which these settings have affected county-level COVID-19 incidence can inform ongoing college and university operations and future planning. To evaluate the effect of large colleges or universities and school instructional format* (remote or in-person) on COVID-19 incidence, start dates and instructional formats for the fall 2020 semester were identified for all not-for-profit large U.S. colleges and universities (≥20,000 total enrolled students). Among counties with large colleges and universities (university counties) included in the analysis, remote-instruction university counties (22) experienced a 17.9% decline in mean COVID-19 incidence during the 21 days before through 21 days after the start of classes (from 17.9 to 14.7 cases per 100,000), and in-person instruction university counties (79) experienced a 56.2% increase in COVID-19 incidence, from 15.3 to 23.9 cases per 100,000. Counties without large colleges and universities (nonuniversity counties) (3,009) experienced a 5.9% decline in COVID-19 incidence, from 15.3 to 14.4 cases per 100,000. Similar findings were observed for percentage of positive test results and hotspot status (i.e., increasing among in-person-instruction university counties). In-person instruction at colleges and universities was associated with increased county-level COVID-19 incidence and percentage test positivity. Implementation of increased mitigation efforts at colleges and universities could minimize on-campus COVID-19 transmission.


Subject(s)
COVID-19/epidemiology , Universities/organization & administration , Adolescent , Adult , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Testing/statistics & numerical data , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
8.
MMWR Morb Mortal Wkly Rep ; 70(20): 759-764, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1237006

ABSTRACT

Approximately 60 million persons in the United States live in rural counties, representing almost one fifth (19.3%) of the population.* In September 2020, COVID-19 incidence (cases per 100,000 population) in rural counties surpassed that in urban counties (1). Rural communities often have a higher proportion of residents who lack health insurance, live with comorbidities or disabilities, are aged ≥65 years, and have limited access to health care facilities with intensive care capabilities, which places these residents at increased risk for COVID-19-associated morbidity and mortality (2,3). To better understand COVID-19 vaccination disparities across the urban-rural continuum, CDC analyzed county-level vaccine administration data among adults aged ≥18 years who received their first dose of either the Pfizer-BioNTech or Moderna COVID-19 vaccine, or a single dose of the Janssen COVID-19 vaccine (Johnson & Johnson) during December 14, 2020-April 10, 2021 in 50 U.S. jurisdictions (49 states and the District of Columbia [DC]). Adult COVID-19 vaccination coverage was lower in rural counties (38.9%) than in urban counties (45.7%) overall and among adults aged 18-64 years (29.1% rural, 37.7% urban), those aged ≥65 years (67.6% rural, 76.1% urban), women (41.7% rural, 48.4% urban), and men (35.3% rural, 41.9% urban). Vaccination coverage varied among jurisdictions: 36 jurisdictions had higher coverage in urban counties, five had higher coverage in rural counties, and five had similar coverage (i.e., within 1%) in urban and rural counties; in four jurisdictions with no rural counties, the urban-rural comparison could not be assessed. A larger proportion of persons in the most rural counties (14.6%) traveled for vaccination to nonadjacent counties (i.e., farther from their county of residence) compared with persons in the most urban counties (10.3%). As availability of COVID-19 vaccines expands, public health practitioners should continue collaborating with health care providers, pharmacies, employers, faith leaders, and other community partners to identify and address barriers to COVID-19 vaccination in rural areas (2).


Subject(s)
COVID-19 Vaccines/administration & dosage , Healthcare Disparities/statistics & numerical data , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Vaccination Coverage/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , United States/epidemiology , Young Adult
9.
MMWR Morb Mortal Wkly Rep ; 70(19): 725-730, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1227232

ABSTRACT

Compared with other age groups, older adults (defined here as persons aged ≥65 years) are at higher risk for COVID-19-associated morbidity and mortality and have therefore been prioritized for COVID-19 vaccination (1,2). Ensuring access to vaccines for older adults has been a focus of federal, state, and local response efforts, and CDC has been monitoring vaccination coverage to identify and address disparities among subpopulations of older adults (2). Vaccine administration data submitted to CDC were analyzed to determine the prevalence of COVID-19 vaccination initiation among adults aged ≥65 years by demographic characteristics and overall. Characteristics of counties with low vaccination initiation rates were quantified using indicators of social vulnerability data from the 2019 American Community Survey.* During December 14, 2020-April 10, 2021, nationwide, a total of 42,736,710 (79.1%) older adults had initiated vaccination. The initiation rate was higher among men than among women and varied by state. On average, counties with low vaccination initiation rates (<50% of older adults having received at least 1 vaccine dose), compared with those with high rates (≥75%), had higher percentages of older adults without a computer, living in poverty, without Internet access, and living alone. CDC, state, and local jurisdictions in partnerships with communities should continue to identify and implement strategies to improve access to COVID-19 vaccination for older adults, such as assistance with scheduling vaccination appointments and transportation to vaccination sites, or vaccination at home if needed for persons who are homebound.† Monitoring demographic and social factors affecting COVID-19 vaccine access for older adults and prioritizing efforts to ensure equitable access to COVID-19 vaccine are needed to ensure high coverage among this group.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vaccination/statistics & numerical data , Aged , COVID-19/epidemiology , Demography , Female , Humans , Male , Social Factors , United States/epidemiology
10.
MMWR Morb Mortal Wkly Rep ; 70(11): 389-395, 2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1140829

ABSTRACT

In December 2020, two COVID-19 vaccines (Pfizer-BioNTech and Moderna) received Emergency Use Authorization from the Food and Drug Administration.*,† Both vaccines require 2 doses for a completed series. The recommended interval between doses is 21 days for Pfizer-BioNTech and 28 days for Moderna; however, up to 42 days between doses is permissible when a delay is unavoidable.§ Two analyses of COVID-19 vaccine administration data were conducted among persons who initiated the vaccination series during December 14, 2020-February 14, 2021, and whose doses were reported to CDC through February 20, 2021. The first analysis was conducted to determine whether persons who received a first dose and had sufficient time to receive the second dose (i.e., as of February 14, 2021, >25 days from receipt of Pfizer-BioNTech vaccine or >32 days from receipt of Moderna vaccine had elapsed) had received the second dose. A second analysis was conducted among persons who received a second COVID-19 dose by February 14, 2021, to determine whether the dose was received during the recommended dosing interval, which in this study was defined as 17-25 days (Pfizer-BioNTech) and 24-32 days (Moderna) after the first dose. Analyses were stratified by jurisdiction and by demographic characteristics. In the first analysis, among 12,496,258 persons who received the first vaccine dose and for whom sufficient time had elapsed to receive the second dose, 88.0% had completed the series, 8.6% had not received the second dose but remained within the allowable interval (≤42 days since the first dose), and 3.4% had missed the second dose (outside the allowable interval, >42 days since the first dose). The percentage of persons who missed the second dose varied by jurisdiction (range = 0.0%-9.1%) and among demographic groups was highest among non-Hispanic American Indian/Alaska Native (AI/AN) persons (5.1%) and persons aged 16-44 years (4.0%). In the second analysis, among 14,205,768 persons who received a second dose, 95.6% received the dose within the recommended interval, although percentages varied by jurisdiction (range = 79.0%-99.9%). Public health officials should identify and address possible barriers to completing the COVID-19 vaccination series to ensure equitable coverage across communities and maximum health benefits for recipients. Strategies to ensure series completion could include scheduling second-dose appointments at the first-dose administration and sending reminders for second-dose visits.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Vaccination Coverage/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , Female , Health Services Accessibility , Humans , Male , Middle Aged , Time Factors , United States/epidemiology , Young Adult
11.
MMWR Morb Mortal Wkly Rep ; 70(5): 174-177, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-1063530

ABSTRACT

In December 2020, two COVID-19 vaccines (Pfizer-BioNTech and Moderna) were authorized for emergency use in the United States for the prevention of coronavirus disease 2019 (COVID-19).* Because of limited initial vaccine supply, the Advisory Committee on Immunization Practices (ACIP) prioritized vaccination of health care personnel† and residents and staff members of long-term care facilities (LTCF) during the first phase of the U.S. COVID-19 vaccination program (1). Both vaccines require 2 doses to complete the series. Data on vaccines administered during December 14, 2020-January 14, 2021, and reported to CDC by January 26, 2021, were analyzed to describe demographic characteristics, including sex, age, and race/ethnicity, of persons who received ≥1 dose of COVID-19 vaccine (i.e., initiated vaccination). During this period, 12,928,749 persons in the United States in 64 jurisdictions and five federal entities§ initiated COVID-19 vaccination. Data on sex were reported for 97.0%, age for 99.9%, and race/ethnicity for 51.9% of vaccine recipients. Among persons who received the first vaccine dose and had reported demographic data, 63.0% were women, 55.0% were aged ≥50 years, and 60.4% were non-Hispanic White (White). More complete reporting of race and ethnicity data at the provider and jurisdictional levels is critical to ensure rapid detection of and response to potential disparities in COVID-19 vaccination. As the U.S. COVID-19 vaccination program expands, public health officials should ensure that vaccine is administered efficiently and equitably within each successive vaccination priority category, especially among those at highest risk for infection and severe adverse health outcomes, many of whom are non-Hispanic Black (Black), non-Hispanic American Indian/Alaska Native (AI/AN), and Hispanic persons (2,3).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , Ethnicity/statistics & numerical data , Female , Humans , Male , Middle Aged , Program Evaluation , Racial Groups/statistics & numerical data , United States/epidemiology , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 69(42): 1535-1541, 2020 Oct 23.
Article in English | MEDLINE | ID: covidwho-890753

ABSTRACT

Poverty, crowded housing, and other community attributes associated with social vulnerability increase a community's risk for adverse health outcomes during and following a public health event (1). CDC uses standard criteria to identify U.S. counties with rapidly increasing coronavirus disease 2019 (COVID-19) incidence (hotspot counties) to support health departments in coordinating public health responses (2). County-level data on COVID-19 cases during June 1-July 25, 2020 and from the 2018 CDC social vulnerability index (SVI) were analyzed to examine associations between social vulnerability and hotspot detection and to describe incidence after hotspot detection. Areas with greater social vulnerabilities, particularly those related to higher representation of racial and ethnic minority residents (risk ratio [RR] = 5.3; 95% confidence interval [CI] = 4.4-6.4), density of housing units per structure (RR = 3.1; 95% CI = 2.7-3.6), and crowded housing units (i.e., more persons than rooms) (RR = 2.0; 95% CI = 1.8-2.3), were more likely to become hotspots, especially in less urban areas. Among hotspot counties, those with greater social vulnerability had higher COVID-19 incidence during the 14 days after detection (212-234 cases per 100,000 persons for highest SVI quartile versus 35-131 cases per 100,000 persons for other quartiles). Focused public health action at the federal, state, and local levels is needed not only to prevent communities with greater social vulnerability from becoming hotspots but also to decrease persistently high incidence among hotspot counties that are socially vulnerable.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Residence Characteristics/statistics & numerical data , Social Determinants of Health , COVID-19 , Crowding , Humans , Incidence , Pandemics , Poverty , Risk Assessment , United States/epidemiology
14.
MMWR Morb Mortal Wkly Rep ; 69(25): 795-800, 2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-616585

ABSTRACT

On March 13, 2020, the United States declared a national emergency in response to the coronavirus disease 2019 (COVID-19) pandemic. Subsequently, states enacted stay-at-home orders to slow the spread of SARS-CoV-2, the virus that causes COVID-19, and reduce the burden on the U.S. health care system. CDC* and the Centers for Medicare & Medicaid Services (CMS)† recommended that health care systems prioritize urgent visits and delay elective care to mitigate the spread of COVID-19 in health care settings. By May 2020, national syndromic surveillance data found that emergency department (ED) visits had declined 42% during the early months of the pandemic (1). This report describes trends in ED visits for three acute life-threatening health conditions (myocardial infarction [MI, also known as heart attack], stroke, and hyperglycemic crisis), immediately before and after declaration of the COVID-19 pandemic as a national emergency. These conditions represent acute events that always necessitate immediate emergency care, even during a public health emergency such as the COVID-19 pandemic. In the 10 weeks following the emergency declaration (March 15-May 23, 2020), ED visits declined 23% for MI, 20% for stroke, and 10% for hyperglycemic crisis, compared with the preceding 10-week period (January 5-March 14, 2020). EDs play a critical role in diagnosing and treating life-threatening conditions that might result in serious disability or death. Persons experiencing signs or symptoms of serious illness, such as severe chest pain, sudden or partial loss of motor function, altered mental state, signs of extreme hyperglycemia, or other life-threatening issues, should seek immediate emergency care, regardless of the pandemic. Clear, frequent, highly visible communication from public health and health care professionals is needed to reinforce the importance of timely care for medical emergencies and to assure the public that EDs are implementing infection prevention and control guidelines that help ensure the safety of their patients and health care personnel.


Subject(s)
Coronavirus Infections/epidemiology , Emergency Service, Hospital/statistics & numerical data , Facilities and Services Utilization/trends , Hyperglycemia/therapy , Myocardial Infarction/therapy , Pandemics , Pneumonia, Viral/epidemiology , Stroke/therapy , Acute Disease , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Male , Middle Aged , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL